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Time-dependent mechanical properties of small amplitude were superimposed on strained 
poly(diethyleneglycol isophthalate) networks. The tan 3 loss peak associated with the glass-rubber 
relaxation shifts to lower temperatures as the static strain increases for values of the elongation ratio 2 lower 
than 4, suggesting that volume effects overcome entropic effects in this region. However, for values 2 > 4, the 
opposite occurs. The activation enthalpy is a linear function of the activation entropy, but the compensation 
law does not hold in the present system. Information on network topology is obtained by analysing the 
experimental results using theories that predict the value of the loss modulus as a function of the generalized 
momenta of the elastic chains. 
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I N T R O D U C T I O N  

The study of the influence of static strain on the dynamic 
mechanical properties of polymer networks is an 
interesting subject with important basic implications 1. 
Thus the location of the glass-rubber transition in the loss 
tan 3 v e r s u s  temperature plot for elongated networks is 
the result of the increase and decrease in free volume and 
conformational entropy, respectively, caused by static 
strain 1-5. If the former effect is dominant, the location of 
the maximum of the glass-rubber absorption will be 
shifted to lower temperature, whereas the opposite will 
occur if it is the latter. 

Other important issues in the analysis of the glass- 
rubber transition of elongated networks are to investigate 
whether the free-volume interpretation of the dynamic 
mechanical response is valid and whether the 
compensation law holds 6-s. Although some of these 
issues were addressed in a previous paper 2, the results 
obtained were not conclusive because they were limited 
by the fact that the elongation ratio 2 was less than 2. 
Therefore, the present work is focused on the analysis of 
the glass-rubber transition of polymer networks under 
moderate and large static strains, with the aim of gaining 
a deeper insight into the effect of orientation of the chains 
on the mechanical properties of networks in general. 

EXPERIMENTAL 

Hydroxyl-terminated poly(diethyleneglycol isophthalate) 
(PDEI) chains were obtained by the standard melt-phase 
procedure from dimethyl isophthalate and diethylene 
glycol, in the presence of isopropyl titanate, following the 
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procedure described elsewherC. The polymer was 
dissolved in chloroform and precipitated several times 
with methanol in order to remove low-molecular-weight 
species and cyclic oligomers. The polymer was 
fractionated at 30°C using chloroform/methanol and the 
fraction of molecular weight 5900 was used in the 
preparation of the networks. The networks were obtained 
at 80°C by end-linking the hydroxyl-terminated chains 
with an aromatic triisocyanate using the method 
described elsewhere 9. The sol fraction of the networks 
was about 5 %. 

Dynamic mechanical measurements were performed 
on unstrained and strained strips, cut from the PDEI  
networks, with a d.m.t.a, apparatus at four frequencies 
(0.33, 1, 3 and 10 Hz) by multiplexing. In order to get 
good reproducibility of the experimental results, the 
thermal history was similar in all the experiments. Thus 
the strip was stretched at 60-65°C in the measuring frame, 
previously removed from the head driver, until the 
desired elongation ratio 2 was reached. The strip was 
permitted to relax and was then kept overnight in a 
vacuum oven at room temperature to remove all traces of 
humidity. The temperature range of measurements was 
- 5 0  to -60°C;  the heating rate on both the high- and 
low-temperature sides of the glass-rubber transition was 
I°C min -1, whereas it was only 0.5°C min -1 at 
temperatures close to that of the peak maximum. 

The value of the glass transition temperature of the 
networks, measured with a DuPont  TMA apparatus, 
amounted to 17°C. 

RESULTS AND DISCUSSION 

Poly(diethyleneglycol isophthalate) 
poly(diethyleneglycol terephthalate) 

chains, like 
chains, do not 
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Figure 1 Temperature dependence of the storage modulus E' for 
poly(diethyleneglycol isophthalate) networks under different elongation 
ratios 2. Values of 2 = 5.18 (ll), 4.34 (I-q), 3.69 (A), 2.72 (A), 1.85 (O), 
1.30 (~), 1.00 (C)) 

crystallize from the bulk even after a long time, 
presumably because the closeness of the glass transition 
to the melting temperature hinders the crystallization 
process; these polymers only crystallize from very dilute 
solutions. Nor  is crystallinity developed in strained 
networks, as was shown elsewhere 9. Therefore the 
changes in shape and position of the glass-rubber peak of 
strained networks made up of PDEI  molecules must be 
caused only by the orientation of the chains in the 
amorphous state. 

Time-dependent mechanical deformations of small 
amplitude were superimposed on large static 
deformations. The temperature dependences of both the 
storage modulus and the loss tangent for strained 
networks in which the elongation ratio ranges from 2 = 1 
to 2=  5.2 are shown in Figures 1 and 2, respectively. In 
Figure 2 we observe a well defined peak associated with 
the glass-rubber transition, whose position shifts to 
slightly lower temperatures with increasing static strain 
for values of 2 up to 4. Then it shifts to higher temperature 
until a value of 2 = 5.2 is reached, and finally the position 
of the maximum of the peak seems to be displaced to 
lower temperatures for larger values of 2. These results 
suggest that, for 1 < 2 < 4 ,  volume effects overcome 
entropic effects; whereas, in the interval 4 <  2<  5.2, the 
latter effects are dominant, presumably as a consequence 
of the sharp reduction in conformational space of the 
phase, which drastically decreases the conformational 
entropy. For  values of 2 > 5.2, mechanical degradation, 
which increases the molecular weight between 
crosslinking points as well as the number of dangling 
chains, may be responsible for the decrease in the 
apparent glass transition temperature observed for the 
networks under the highest static strain used in this work. 

Normalized tan 6 versus frequency plots were used to 
investigate whether the glass--rubber transition of 
strained networks can be interpreted in terms of the free- 
volume theory x°'xx. Taking the isotherm corresponding 
to 3 I°C as reference, the master curves shown in Figure 3 
were obtained for the networks under different static 
strains. For  the sake of clarity we have only represented 
the master curves corresponding to 2 = 1 and 2.72 and, for 
comparison purposes, the curve corresponding to a single 
relaxation time is also shown. It can be seen that thewidth 
of the master curves narrows as the static strain increases, 
as a result of the fact that the growing number of 
viscoelastic mechanisms involved in the relaxation 
phenomena in the unstrained state are not permitted as 
the static strain increases. 

By assuming that all the relaxation times involved in 
the glass-rubber transition of each strained network have 
the same temperature dependence, the ratio ar=%/Ti.0 
between the relaxation times % and z~, o associated with 
the viscoelastic mechanism i at temperatures T and T o, 
respectively, can be expressed by the Vogel-Tamman 
equation ~ 2: 

In aT= A' + m / ( T -  Too) (1) 

where 

A'= - m / ( T  o -  Too) (2) 

Too being the temperature at which the free volume would 
be zero were it not for the formation of the glassy state. 

The slope m in the In ar versus 1 / ( T -  Too) plot is related 
to the free-volume expansion coefficient ~r and to the 
specific volume by the expression: 

m = Bv/o~f (3) 

where B is a constant whose value is believed to be close to 
unity. 

By comparing the Vogel and the Doolittle x 3 equations, 
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Figure 2 Temperature dependence of the loss tan~ for 
poly(dicthyleneglycol isophthalate) networks under different elongation 
ratios (as in Figure I) 
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Figare 3 Master curves at 31 °C for the normalized loss tangent of poly(diethyleneglycol isophthalate) networks at 2 = 1 and 2 = 2.72. The broken curve 
represents the loss tangent for a single relaxation time 

Table 1 Values of  the relative free volume, expressed in terms of (~/B, 
and the expansion coefficient ctfas a function of the elongation ratio for 
poly(diethyleneglycol isophthalate) networks at Tg 

2 102q~/B 104~f 

1.00 1.98 3.96 
1.30 1.92 3.84 
1.85 1.94 4.04 
2.72 1.91 3.98 
3.69 1.84 4.00 
4.34 1.75 3.72 
5.18 1.56 3.55 

one obtains: 

m = (B/dp) / (T-  T ~ ) =  (B/q~g)/(Tg - Too) (4) 

o~ = (c~/B) / (T-  Too) (5) 

where ~b and q~g represent the relative free volume at T and 
T~, respectively. 

Values of Too for each static strain were obtained by 
fitting the experimental results to straight lines in the In ar 
versus 1 / ( T -  Too) plot, as suggested by equation (1). The 
value obtained for Too was -33°C in all the cases. Values 
of both (ag/B and ~, shown in Table I,  were obtained in 
turn from equations (4) and (5), respectively, by 
correcting the glass transition temperatures of the 
strained networks according to the displacements of the 
temperatures associated with the maximum of the peaks 
of the glass-rubber absorption. The results obtained for 
both dpJB and 0t seem to support the free-volume 
interpretation of the glass-rubber relaxation of 
unstrained and strained networks, as both quantities lie 
within the range of values reported for these parameters 
in most amorphous systems. 

Since the glass-rubber relaxation is an activated 

process, the dynamic mechanical results could also be 
interpreted in terms of the Eyring equation14: 

09= (k T/h) exp(ASS/k) exp(-An~/kT)  (6) 

where to is the frequency associated with the relaxation, 
AS s and AH ~ represent the activation entropy and 
enthalpy, respectively, and k and h are the Boltzmann and 
Planck constants. According to the theory, the activation 
parameters are given by6-a: 

A H  s = A V S / K  (7) 

AS* = AVS~'/~ (8) 

where V ~ is the activation volume, cc and fl represent the 
thermal expansion and compressibility coefficients, 
respectively, and K is a constant whose value is believed 
to be 4. 

Both the values of AH ~ and AS s increase as the 
elongation ratio increases and, as shown in Figure 4, the 
activation enthalpy is a linear function of the activation 
entropy. The fact that the straight line corresponding to 
the AH s versus AS  s plot does not pass through the origin 
suggests that in the present system the compensation law 
does not hold. For example, the compensation 
temperature defined as: 

Tc = A H  S/AS ~ (9) 

changed from 364 K for 2 = 1 to 340 K for 2 = 5.2. 
The changes in activation enthalpy caused by the static 

strain can be interpreted as the result of an increase in the 
barriers opposing Brownian motion involved in the 
glass-rubber relaxation. On the other hand, the 
activation entropy is associated with complex relaxations 
in which cooperative intramolecular motions and 
intermolecular interactions are involved 15. The increase 
in activation entropy with increasing static strain is 
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Figure 4 Dependence of the activation enthalpy on the activation 
entropy for strained poly(diethyleneglycol isophthalate) networks 

consistent with the decrease in conformational entropy 
caused by the orientation of the chains. Finally, the 
average value obtained for the expansion coefficient, i.e. 
(7.06 + 0.17) x 10-4 K-1, from equations (7) and (8) is in 
fair agreement with the value obtained for this parameter 
by picnometry, i.e. 5.5 x 10 -4 K -1 (ref. 9). 

The experimental results indicate that the loss modulus 
of strained networks increases with the static strain. This 
experimental fact is explained by Borodin and 
Khazanovich t 6 as a consequence of the finite extensibility 
of the chains. The theory is based upon a general 
relationship between the stress tensor and correlation 
functions of the dissipative momentum flux, and provides 
information on the structure of the networks, more 
specifically on the second (2 and successive momenta (2., 
and on the properties of the extended polymer chains. 

The static strain dependence of the loss modulus in 
strained elastomers is given by the following 
expansions t 6: 

e"(to) = Eg(to)[-1 + (4/15)(2(222 + 2- t) + (1/875)(4 
x (86424- 242 + 5642- 2) + . . . ]  (10) 

E"(co) = E~(co)[1 + (3/10)(22 z + (3/700)(4(127524 
- 3702 + 7122- 2) + . . . ]  (11) 

These two limiting cases refer, respectively, to a freely 
jointed chain with constant relaxation times and to a 
chain with constant diffusion coefficient whose relaxation 
times strongly decrease with extension. In these equations 
E~(co) is the loss modulus in the model of Gaussian 
subchains and (2, represents the generalized momenta 
defined as16: 

Nc 

~2"=(I/Nc) ~,, (hv/L~)2"(N~/N) (12) 
v = l  

1V= ~., (N/Nc) (13) 
V = I  

where hv is the end-to-end distance of the vth chain in the 
network and Lv its contour length; Nc and Nv represent 
the number of chains in the network and the number of 
linkages in the vth chain. 

Curves showing the static strain dependence of the loss 
modulus at different temperatures and frequencies are 
presented in Figure 5. Since the second and fourth 
momenta are frequency-independent and only slightly 
dependent on temperature, equations (10) and (11) are 
useful to determine the values of these quantities. Thus 
the best values obtained for (2 and (+ using equation (12) 
are shown in Table 2, the average values of the second and 
fourth momenta being 0.296 and 0.0079, respectively. It 
should be stressed that theory gives a good account of the 
experimental results for values 2 < 4. However, for 2 > 4, 
the experimental values of E"(co) decrease with increasing 
static strain, in sharp contrast with the theoretical values, 
which increase continuously. Finally, slightly larger 
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F i g u r e  5 Variation of the loss modulus E" at 1 Hz with the static strain 
in poly(diethyleneglycol isophthalate) networks: (O), (A) and (A) 
indicate the experimental values of E" at 40, 45 and 50°C, respectively. 
The curves represent the values of E" obtained by means of equation (10) 

T a b l e  2 Values of E~ and the second and fourth momenta defined in 
equation (12) as a function of the frequency and temperature 

CO (Hz) T (°C) 10-6El (N m -2) ~2 ~,* 

0.33 40 1.99 0.316 0.0020 
0.33 45 1.00 0.285 0.0013 
1 40 3.14 0.300 0.0210 
1 45 1.46 0.313 0.0105 
1 50 0.83 0.245 0.0056 
3 40 6.68 0.310 0.0060 
3 45 2.96 0.273 0.0095 
3 50 1.37 0.278 0.0117 
3 55 0.83 0.310 0.0108 

10 50 2.99 0.291 0.0114 
I0 55 1.84 0.307 0.0028 
10 60 1.15 0.321 0.0026 
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Figure 6 Variation of e ( 0 )  and 7 (A) with the static strain. The units 
of e and y are, respectively, N m -  2 K -  1 and K-  1 (see the text for the 
definitions of e and 7) 

values are obtained for (2 and (4 if equation (11) instead 
of equation (10) is used in the calculations. 

It is informative to relate the loss area in the isochronal 
plots with the static strain. From classical 
thermodynamics it can be shown that: 

(~E'/c~ TL, = -(~E'/~ In CO)r(t3 In og/c~T)E, (14) 

(8 In E'/t3TL,= - ( ~ I n  E'/d In co)r(d In co/dT)E, (15) 

where E' represents the storage modulus. These 
relationships lead to 17 : 

E' - E '  ~-(2Ea/~R ) E" d(1/T) (16) T 2 TI 

;/ ln(E'rJE'r,) ~- (2Ea/rCR) tan 8 d In ( l /T)  (17) 
1 

from which the areas under both E" and tan 6 versus 1/T 
can be estimated. Values of 

;i f? e = r2 E" d ( 1 / r )  and y = tan ~ d In( l /T)  
1 1 

at 1 Hz are shown in Figure 6. It can be seen that e 
increases as the static strain increases, reaching a 
maximum at )~--4. On the contrary, a sharp decrease in 
the values of 7 can be detected in the interval 1 < 2 < 2, and 
the decrease is only moderate for 2 > 4. It is worth noting 
that the mechanical loss, expressed by the loss modulus, 
presents a maximum at the elongation ratio at which the 
stress versus the reciprocal of the elongation ratio plot 
exhibits an anomalous increase in the modulus 9. 
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